Národní úložiště šedé literatury Nalezeno 3 záznamů.  Hledání trvalo 0.00 vteřin. 
The analysis of limits for multimode fibre imaging
Štolzová, Hana ; Kozubek, Michal (oponent) ; Dostál, Zbyněk (vedoucí práce)
Multimode fibers are the imaging tool of a significant potential in in-vivo microendoscopy. Recently, this method has seen a great development, thanks to the improvements in computational and other technologies, such as digital spatial light modulation. The aim of this work was to find specific limits of multimode fiber imaging and to present their computer simulation. The effect of illumination of the optical system containing the multimode fiber on its focussing and imaging capability was investigated. By analysing the data obtained from simulations and experiments, it has been found that the various levels of the Gaussian beam truncation by a projected multimode fiber numerical aperture results in a significant variance in the imaging capabilities of the system. Therefore, it seems that the multimode optical fibers are not a completely random medium. Observing the quality of the focusing, it was found that low truncated beams (beam-waist around 50% of the projected fiber numerical aperture), have the highest performance. This fact was verified by experimental measurements. Imaging using similarly truncated beams showed the best contrast transmission capability. However, when analysing the resolution of two pointlike objects, the beams with a significantly larger waist and a higher degree of truncation, of 100% or more, were most appropriate. The presence of this difference forces the person using the imaging system containing the multimode fiber to consider several aspects, in what environment the particular optical system will be used and which imaging quality indicator will be considered the most important.
The analysis of limits for multimode fibre imaging
Štolzová, Hana ; Kozubek, Michal (oponent) ; Dostál, Zbyněk (vedoucí práce)
Multimode fibers are the imaging tool of a significant potential in in-vivo microendoscopy. Recently, this method has seen a great development, thanks to the improvements in computational and other technologies, such as digital spatial light modulation. The aim of this work was to find specific limits of multimode fiber imaging and to present their computer simulation. The effect of illumination of the optical system containing the multimode fiber on its focussing and imaging capability was investigated. By analysing the data obtained from simulations and experiments, it has been found that the various levels of the Gaussian beam truncation by a projected multimode fiber numerical aperture results in a significant variance in the imaging capabilities of the system. Therefore, it seems that the multimode optical fibers are not a completely random medium. Observing the quality of the focusing, it was found that low truncated beams (beam-waist around 50% of the projected fiber numerical aperture), have the highest performance. This fact was verified by experimental measurements. Imaging using similarly truncated beams showed the best contrast transmission capability. However, when analysing the resolution of two pointlike objects, the beams with a significantly larger waist and a higher degree of truncation, of 100% or more, were most appropriate. The presence of this difference forces the person using the imaging system containing the multimode fiber to consider several aspects, in what environment the particular optical system will be used and which imaging quality indicator will be considered the most important.
Imaging via multimode optical fiber: recovery of a transmission matrix using internal references
Šiler, Martin ; Jákl, Petr ; Traegaardh, Johanna ; Ježek, Jan ; Uhlířová, Hana ; Tučková, Tereza ; Zemánek, Pavel ; Čižmár, Tomáš
Current research of life shows a great desire to study the mechanics of biological processes\ndirectly within the complexity of living organisms. However, majority of practical techniques\nused nowadays for tissue visualization can only reach depths of a few tens of micrometres as\nthe issue obscures deep imaging due to the random light scattering. Several imaging\ntechniques deal with this problems from different angels, such as optical coherence\ntomography, light sheet microscopy or structured light illumination A different and promising strategy to overcome the turbid nature of scattering tissues is to employ multimode optical fibers (MMF) as minimally invasive light guides or endoscopes to provide optical access inside. Although the theoretical description of light propagation through such fibers has been developed a long time ago it is frequently considered inadequate to describe real MMF. The inherent randomization of light propagating through MMFs is typically attributed to undetectable deviations from the ideal fiber structure. It is a commonly believed that this\nadditional chaos is unpredictable and that its influence grows with the length of the fiber.\nDespite this, light transport through MMFs remains deterministic and can be characterized by a transmission matrix (TM) which connects the intensity and phase patterns on the fiber input and output facets. Once the TM is known it can be used to create focus in any desired 3D\ncoordinates beyond the distal fiber facet, see figure 1, and perform e.g. fluorescence based\nlaser scanning microscopy or optical trapping.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.